Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The vertical settling of dust grains in a circumstellar disk, characterized by their scale height, is a pivotal process in the formation of planets. This study offers in-depth analysis and modeling of the radial scale height profile of dust grains in the HL Tau system, leveraging high-resolution polarization observations. We resolve the inner disk’s polarization, revealing a significant nearside–farside asymmetry, with the nearside being markedly brighter than the farside in polarized intensity. This asymmetry is attributed to a geometrically thick inner dust disk, suggesting a large aspect ratio ofH/R≥ 0.15, whereHis the dust scale height andRis the radius. The first ring at 20 au exhibits an azimuthal contrast, with polarization enhanced along the minor axis, indicating a moderately thick dust ring withH/R ≈ 0.1. The absence of the nearside–farside asymmetry at larger scales implies a thin dust layer, withH/R < 0.05. Taken together, these findings depict a disk with a turbulent inner region and a settled outer disk, requiring a variable turbulence model withαincreasing from 10−5at 100 au to 10−2.5at 20 au. This research sheds light on dust settling and turbulence levels within protoplanetary disks, providing valuable insights into the mechanisms of planet formation.more » « lessFree, publicly-accessible full text available August 14, 2026
- 
            Abstract Due to dust grain alignment with magnetic fields, dust polarization observations of far-infrared emission from cold molecular clouds are often used to trace magnetic fields, allowing a probe of the effects of magnetic fields on the star formation process. We present inferred magnetic field maps of the Pillars of Creation region within the larger M16 emission nebula, derived from dust polarization data in the 89 and 154μm continuum using the Stratospheric Observatory For Infrared Astronomy/High-resolution Airborne Wideband Camera. We derive magnetic field strength estimates using the Davis–Chandrasekhar–Fermi method. We compare the polarization and magnetic field strengths to column densities and dust continuum intensities across the region to build a coherent picture of the relationship between star-forming activity and magnetic fields in the region. The projected magnetic field strengths derived are in the range of ∼50–130μG, which is typical for clouds of similarn(H2), i.e., molecular hydrogen volume density on the order of 104–105cm−3. We conclude that star formation occurs in the finger tips when the magnetic fields are too weak to prevent radial collapse due to gravity but strong enough to oppose OB stellar radiation pressure, while in the base of the fingers the magnetic fields hinder mass accretion and consequently star formation. We also support an initial weak-field model (<50μG) with subsequent strengthening through realignment and compression, resulting in a dynamically important magnetic field.more » « lessFree, publicly-accessible full text available July 16, 2026
- 
            Abstract Circumstellar disk dust polarization in the (sub)millimeter is, for the most part, not from dust grain alignment with magnetic fields but rather indicative of a combination of dust self-scattering with a yet unknown alignment mechanism that is consistent with mechanical alignment. While the observational evidence for scattering has been well established, that for mechanical alignment is less so. Circum-multiple dust structures in protostellar systems provide a unique environment to probe different polarization alignment mechanisms. We present ALMA Band 4 and Band 7 polarization observations toward the multiple young system L1448 IRS3B. The polarization in the two bands are consistent with each other, presenting multiple polarization morphologies. On the size scale of the inner envelope surrounding the circum-multiple disk, the polarization is consistent with magnetic field dust grain alignment. On the very small scale of compact circumstellar regions, we see polarization that is consistent with scattering around sourceaandc, which are likely the most optically thick components. Finally, we see polarization that is consistent with mechanical alignment of dust grains along the spiral dust structures, which would suggest that the dust is tracing the relative gas flow along the spiral arms. If the gas-flow dust grain alignment mechanism is dominant in these cases, disk dust polarization may provide a direct probe of the small-scale kinematics of the gas flow relative to the dust grains.more » « lessFree, publicly-accessible full text available May 21, 2026
- 
            ABSTRACT Recent (sub)millimetre polarization observations of protoplanetary discs reveal toroidally aligned, effectively prolate dust grains large enough (at least $$\sim 100$$\mu$$m) to efficiently scatter millimetre light. The alignment mechanism for these grains remains unclear. We explore the possibility that gas drag aligns grains through gas–dust relative motion when the grain’s centre of mass is offset from its geometric centre, analogous to a badminton birdie’s alignment in flight. A simple grain model of two non-identical spheres illustrates how a grain undergoes damped oscillations from flow-induced restoring torques which align its geometric centre in the flow direction relative to its centre of mass. Assuming specular reflection and subsonic flow, we derive an analytical equation of motion for spheroids where the centre of mass can be shifted away from the spheroid’s geometric centre. We show that a prolate or an oblate grain can be aligned with the long axis parallel to the gas flow when the centre of mass is shifted along that axis. Both scenarios can explain the required effectively prolate grains inferred from observations. Application to a simple disc model shows that the alignment time-scales are shorter than or comparable to the orbital time. The grain alignment direction in a disc depends on the disc (sub-)structure and grain Stokes number (St) with azimuthal alignment for large St grains in sub-Keplerian smooth gas discs and for small St grains near the gas pressure extrema, such as rings and gaps.more » « less
- 
            Abstract We investigate the crescent-shaped dust trap in the transition disk Oph IRS 48 using well-resolved (sub)millimeter polarimetric observations at ALMA Band 7 (870μm). The dust polarization map reveals patterns consistent with dust-scattering-induced polarization. There is a relative displacement between the polarized flux and the total flux, which holds the key to understanding the dust scale heights in this system. We model the polarization observations, focusing on the effects of dust scale heights. We find that the interplay between the inclination-induced polarization and the polarization arising from radiation anisotropy in the crescent determines the observed polarization; the anisotropy is controlled by the dust optical depth along the midplane, which is, in turn, determined by the dust scale height in the vertical direction. We find that the dust grains can be neither completely settled nor well mixed with the gas. The completely settled case produces little radial displacement between the total and polarized flux, while the well-mixed case produces an azimuthal pattern in the outer (radial) edge of the crescent that is not observed. Our best model has a gas-to-dust scale height ratio of 2 and can reproduce both the radial displacement and the azimuthal displacement between the total and polarized flux. We infer an effective turbulenceαparameter of approximately 0.0001–0.005. The scattering-induced polarization provides insight into a turbulent vortex with a moderate level of dust settling in the IRS 48 system, which is hard to achieve otherwise.more » « less
- 
            Abstract Millimeter and submillimeter observations of continuum linear dust polarization provide insight into dust grain growth in protoplanetary disks, which are the progenitors of planetary systems. We present the results of the first survey of dust polarization in protoplanetary disks at 870μm and 3 mm. We find that protoplanetary disks in the same molecular cloud at similar evolutionary stages can exhibit different correlations between observing wavelength and polarization morphology and fraction. We explore possible origins for these differences in polarization, including differences in dust populations and protostar properties. For RY Tau and MWC 480, which are consistent with scattering at both wavelengths, we present models of the scattering polarization from several dust grain size distributions. These models aim to reproduce two features of the observational results for these disks: (1) both disks have an observable degree of polarization at both wavelengths; and (2) the polarization fraction is higher at 3 mm than at 870μm in the centers of the disks. For both disks, these features can be reproduced by a power-law distribution of spherical dust grains with a maximum radius of 200μm and high optical depth. In MWC 480, we can also reproduce features (1) and (2) with a model containing large grains (amax= 490μm) near the disk midplane and small grains (amax= 140μm) above and below the midplane.more » « less
- 
            Abstract We use the H41αrecombination line to create templates of the millimeter free–free emission in the ALMA-IMF continuum maps, which allows us to separate it from dust emission. This method complements spectral-index information and extrapolation from centimeter-wavelength maps. We use the derived maps to estimate the properties of up to 34 Hiiregions across the ALMA-IMF protoclusters. The hydrogen ionizing photon rateQ0and spectral types follow the evolutionary trend proposed by Motte et al. The youngest protoclusters lack detectable ionized gas, followed by protoclusters with increasing numbers of OB stars. The totalQ0increases from ∼1045s−1to >1049s−1. We used the adjacent He41αline to measure the relative number abundances of helium, finding values consistent with the Galactic interstellar medium, although a few outliers are discussed. A search for sites of maser amplification of the H41αline returned negative results. We looked for possible correlations between the electron densities, emission measures, andQ0with Hiiregion sizeD. The latter is the best correlated, withQ0∝D2.49 ± 0.18. This favors interpretations in which smaller ultracompact Hiiregions are not necessarily the less dynamically evolved versions of larger ones but rather are ionized by less massive stars. Moderate correlations were found between the dynamical width ΔVdynwithDandQ0. ΔVdynincreases from about 1 to 2 times the ionized-gas sound speed. Finally, an outlier Hiiregion south of W43-MM2 is discussed. We suggest that this source could harbor an embedded stellar or disk wind.more » « less
- 
            Abstract Crescent-shaped structures in transition disks hold the key to studying the putative companions to the central stars. The dust dynamics, especially that of different grain sizes, is important to understanding the role of pressure bumps in planet formation. In this work, we present deep dust continuum observation with high resolution toward the Oph IRS 48 system. For the first time, we are able to significantly trace and detect emission along 95% of the ring crossing the crescent-shaped structure. The ring is highly eccentric with an eccentricity of 0.27. The flux density contrast between the peak of the flux and its counterpart along the ring is ∼270. In addition, we detect a compact emission toward the central star. If the emission is an inner circumstellar disk inside the cavity, it has a radius of at most a couple of astronomical units with a dust mass of 1.5 × 10 −8 M ⊙ , or 0.005 M ⊕ . We also discuss the implications of the potential eccentric orbit on the proper motion of the crescent, the putative secondary companion, and the asymmetry in velocity maps.more » « less
- 
            ABSTRACT Polarization is a unique tool to study the dust grains of protoplanetary discs. Polarization around HL Tau was previously imaged using the Atacama Large Millimeter/submillimeter Array (ALMA) at Bands 3 (3.1 mm), 6 (1.3 mm), and 7 (0.87 mm), showing that the polarization orientation changes across wavelength λ. Polarization at Band 7 is predominantly parallel to the disc minor axis but appears azimuthally oriented at Band 3, with the morphology at Band 6 in between the two. We present new ∼0.2 arcsec (29 au) polarization observations at Q-Band (7.0 mm) using the Karl G. Jansky Very Large Array (VLA) and at Bands 4 (2.1 mm), 5 (1.5 mm), and 7 using ALMA, consolidating HL Tau’s position as the protoplanetary disc with the most complete wavelength coverage in dust polarization. The polarization patterns at Bands 4 and 5 follow the previously identified morphological transition with wavelength. From the azimuthal variation, we decompose the polarization into contributions from scattering (s) and thermal emission (t). s decreases slowly with increasing λ, and t increases more rapidly which are expected from optical depth effects of toroidally aligned scattering prolate grains. The weak λ dependence of s is inconsistent with the simplest case of Rayleigh scattering by small grains in the optically thin limit but can be affected by factors such as optical depth, disc substructure, and dust porosity. The sparse polarization detections from the Q-band image are also consistent with toroidally aligned prolate grains.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
